
How to use clfsm with ROS

Vladimir Estivill-Castro
MiPal

October 24, 2016

Abstract

This document gets you started on using clfsm with ROS. It can be used as a tutorial to
gain an understanding of very basic behaviors defined with logic-labeled finite-state machines
(llfsms). More sophisticated examples, like machines and submachines that are suspended and
restarted are possible, but this is a beginners guide.

Contents
1 Examples of logic-labelled finite-state machines using clfsm 1

1.1 The setup . 2

2 Machines with the ROS turtlesim 3
2.1 Building the machine RosPingPong using MIEDITLLFSM 3
2.2 How to compile clfsm machines with catkin 4
2.3 How to run the machine . 6
2.4 How to compile the machine RosPingPong with bmake 6
2.5 A machine that controls actuators: RosBlindTurttleBot 8
2.6 A machine for reactive behavior: sensors and actuators 10

2.6.1 The sample ROS-service to publish the position of the turtle 11
2.6.2 The example llfsm where the turtle reacts to its position to the wall 11
2.6.3 Running the machine RosWallTurttleBot 13
2.6.4 A machine to suspend and re-start RosWallTurttleBot 14

1 Examples of logic-labelled finite-state machines using clfsm
To help you use clfsm with ROS we have four examples. You can see the first two examples in
the video www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be.

1. The first llfsm is a simple machine that publishes ROS:messages. It has one state where
we see the count, and another state that actually performs the publishing. Figure 1 shows a
picture of this machine.

1

http://wiki.ros.org/
http://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be
http://wiki.ros.org/

Figure 1: RosPingPong is a simple llfsm. If you have completed the ROS tutorials and under-
stand the semantics of llfsms you should be able to describe what it does before you actually run
it.

2. The second machine is a machine that actually instructs the TurtleBot to walk around. This
is a simple behavior but has no use of sensors. The behavior controls actuators but does not
collect any information from the environment.

3. The third example does control the TurtleBot with a reactive behavior. The idea is that the
turtle walks straight until it is too close to the border of the simulation. When it gets too
close, it drives back for a bit, and turns for a bit. After that, it returns to the moving-forward
state. A video of this behavior is available at youtu.be/4txscEXN8lQ.

4. We can create an arrangement of llfsms where two machines execute concurrently (in fact in
a sequential schedule), and one suspends and resumes the other.

You can use this document as a tutorial the material to follows and the goal is to make sure you
can execute these 4 llfsms.

1.1 The setup
This section assumes you have read the current “How to use” of MIEDITLLFSM” so you have
an understanding of the structure of MiPal’s llfsms. It has been tested on Ubuntu 14.04 64 bits
and ROS-Indigo. Only the first machine has been tested on MacOS-Mavericks and ROS-hydro.
Also, we assume you have successfully installed ROS (wiki.ros.org/indigo/Installation/Ubuntu)
and completed the beginners ROS tutorials (http://wiki.ros.org/ROS/Tutorials). In particular, you
should have a catkin workspace and be able to build ROS modules like in the tutorials with
catkin_make.

Moreover, since we are not using MiPal’s “Getting Started” document, at least in Ubuntu you
have to perform the following. For the gusimplewhiteboard module:

sudo apt-get install libdispatch-dev

2

http://wiki.ros.org/
http://youtu.be/4txscEXN8lQ
http://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/
http://mipal.net.au

The catkin workspace with sources of clfsm, and the other modules comes as
clfsm.tar.bz2.
You should extract the files with

tar xjvf clfsm.tar.bz2

Place the code in the corresponding src directory of your catkin workspace. Thats is assuming
you have a catkin_ws under your home directory as per the ROS tutorials, then

cd $HOME/catkin_ws
ls src

should produce
clfsm
CMakeLists.txt
gusimplewhiteboard
libclfsm

A catkin_make should compile all modules.

2 Machines with the ROS turtlesim

2.1 Building the machine RosPingPong using MIEDITLLFSM

Please attempt to construct RosPingPong using MIEDITLLFSM although is provided with the
download instructions. For the RosPingPong machine (Figure 1) you need the following in-
cludes, in the include section of the machine.

#include "ros/ros.h"
#include "std_msgs/String.h"
#include "CLMacros.h"

#include <sstream>

On the other hand, the variables section of this machine are as follows.
ros::NodeHandle* n
int count
ros::Publisher chatter_pub

The machine RosPingPong can be built with MIEDITLLFSM. The INITIAL state is rather
simple, it is just a set up. There is just code for the OnEntry section of this state. There is a bit of
work handling C-string versus C++11 strings. This code is C++11 compatible.

int argc = 0; static char *argv[1];
std::string node_name="pingpong";
char * cstr = new char [node_name.length()+1];
std::strcpy (cstr, node_name.c_str());
argv[0]= cstr;

ros::init(argc, argv, "pingpong");
n=new ros::NodeHandle();

chatter_pub = n->advertise<std_msgs::String>("pinpong", 1000);

count = 0;

3

http://wiki.ros.org/
http://wiki.ros.org/

From INITIAL, we go to PUBLISH after one second; thus, the transition is after_ms(1000).
The state PUBLISH also has code only for the OnEntry section

std_msgs::String msg;

std::stringstream ss;
ss << "hello world " << count;
msg.data = ss.str();

ROS_INFO("%s", msg.data.c_str());
chatter_pub.publish(msg);

The PUBLISH state alternates with the WAIT_AND_COUNT state with transitions of 10ms; that
is, respective transitions after_ms(10). The state WAIT_AND_COUNT only has a simple
OnEntry section to increment the counter and to the ROS spin.

++count;

There is an accepting final state called END. The transitions to it are the test that ROS has finished
!ros::ok().

2.2 How to compile clfsm machines with catkin
The logic-labeled finite-state machines of clfsm come in a directory <machine_name>.machine.
That is, they have an extension .machine.

We are going to explain here the assistance we provide so you can set a machine as a catkin
package and compile them with the command catkin_make. This will be more familiar to you
if you are a ROS user.

We place each machine as a package. So we recommend that you do so in your catkin
workspace. For example for the ROSPINGPONG llfsm we recommend the following.

cd $HOME/catkin_ws/src
catkin_create_pkg RosPingPong std_msgs roscpp clfsm libclfsm

You notice that if you now go an edit the file package.xml you already find there the required
packages.

<build_depend>libclfsm</build_depend>
<build_depend>roscpp</build_depend>
<run_depend>clfsm</run_depend>
<run_depend>libclfsm</run_depend>

Thus, in general, you create a package for an llfsm as follows.
cd $HOME/catkin_ws/src
catkin_create_pkg machineName std_msgs roscpp clfsm libclfsm

The next thing is to create a machine directory that is sibling to the src and include
directories of your package. Place you directory machineName.machine in there

cd $HOME/catkin_ws/src
cd machineName
mkdir -p machine
mv machineName.machine machine

4

http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

Copy the assisting script machine_catkin_setup.sh1 into the machine directory as well.
Depending of where you download machine_catkin_setup.sh, the first command may be
different, and also, you may need to change its permissions to make it an executable script.

cp $HOME/Download/machine_catkin_setup.sh machine
cd machine
chmod ugo+x machine_catkin_setup.sh
./machine_catkin_setup.sh machineName.machine

The script will populate the src and include folders of your package. If you edit the machine,
that is, if you modify states, change the code, or anything that varies the machine, you need to
run the script again. You can check that you have files in src and include by executing the
following commands inside the directory machine.

ls ../src
ls ../include/

More importantly, the script creates a file CMakeLists_machineName.txt that provides you
with a suggestion for the file CMakeLists.txt of the package of the machine in order to com-
plete configuring it for catkin. The output highlights the main points and hints what are the
issues in constructing the CMakeLists.txt for catkin. Although the script inspects whether
you are running MacOS or Ubuntu, it will give you the suggestions so the resulting catkin
package would be portable to both.

You can revise the suggestions in the corresponding sections, the output file
CMakeLists_machineName.txt

gives you an initial CMakeLists.txt and the output of the script indicates which sections
require these additions. Some may not be necessary, like the hint

find_package(catkin REQUIRED COMPONENTS clfsm libclfsm)

This is just a remainder in case you forgot listing these two packages on creation of the package
for the machine.

Important: You will need to check the hint
catkin_package(LIBRARIES libmachineName)

This means that the configuration includes the following aspects:

1. to uncomment the corresponding line

2. and the string lib before machineName.

It is necessary to do this because we need to separate the compilation of the source code of the
machine itself, with the linking to produce the input for clfsm.

Also you must make sure that catkin knows to link against libclfsm. So you need to
make sure the line

CATKIN_DEPENDS clfsm libclfsm roscpp std_msgs

is not commented. So at a minimum, that section should look something like this:
catkin_package(
INCLUDE_DIRS include
LIBRARIES libmachineName
CATKIN_DEPENDS clfsm libclfsm roscpp std_msgs
DEPENDS system_lib)

1see the MiPal downloads mipal.net.au/downloads.php

5

http://mipal.net.au
http://mipal.net.au/downloads.php

You can use
CMakeLists_machineName.txt

as the file CMakeLists.txt for catkin to compile your package.
cd $HOME/catkin_ws/
catkin_make

This will produce your machine in
$HOME/catkin_ws/devel/lib/libmachineName.some-Extension

where the extension depends on the operating system. Moreover, the script
machine_catkin_setup.sh
should have also created a directory

$HOME/catkin_ws/devel/lib/machineName.machine/some-OS-description

You must copy the compiled machine in the file
$HOME/catkin_ws/devel/lib/libmachineName.some-Extension

into the directory
$HOME/catkin_ws/devel/lib/machineName.machine/some-OS-description

twice; once with the name
$HOME/catkin_ws/devel/lib/machineName.machine/some-OS-description/machineName

and also
$HOME/catkin_ws/devel/lib/machineName.machine/some-OS-description/machineName.so

2.3 How to run the machine
If all the previous steps succeed you should have an executable of clfsm in

$HOME/catkin_ws/devel/lib/clfsm/clfsm

Thus, you can run the executable of clfsm which you should have in
$HOME/catkin_ws/devel/lib/clfsm/clfsm

providing as argument the directory
$HOME/catkin_ws/devel/lib/machineName.machine

If you place the option -v (for verbose) to clfsm before the arrangements of llfsms, you
should see the execution of the states.

2.4 How to compile the machine RosPingPong with bmake
We can run llfsms outside the catkin environment and with ROS. We will use bmake and
a Makefile to compile the machine RosPingPong before we execute it with clfsm (the
Makefile for this is supplied with the download, just modify the early line that defines the
variable MACHINES to the arrangement of llfsms you want to compile without the .machine
extension).

Therefore, we need to install bmake. In Ubuntu, this is simply
sudo apt-get install bmake

We also need a directory for construction of libraries
mkdir -p /usr/local/lib

6

http://wiki.ros.org/

.
Download the Makefile. You must have created a catkin workspace for the ROS tutorials;

suppose as per the tutorials is called catkin_ws. Typically,
cd $HOME/catkin_ws
ls

gives something like
build
devel
src

Place a directory machines in your catkin_ws.
mkdir -p machines

Thus, now
cd $HOME/catkin_ws
ls

gives something like
build
devel
machines
src

Place the Makefile inside the directory machines and also place RosPingPong there. It
must be the case that

cd $HOME/catkin_ws
ls machines

gives
Makefile
RosPingPong.machine

Now, simply go inside the machines directory and compile them with the Makefile script
using bmake.

cd $HOME/catkin_ws/machines
bmake

There may be some warnings, but an executable machine is produced 2. In another terminal start
roscore. Remember that the path to the executable of clfsm is

/catkin_ws/devel/lib/clfsm/clfsm

If you compiled with bmake, in the machines folder run the machine using clfsm.
/catkin_ws/devel/lib/clfsm/clfsm RosPingPong

Remember that the -v (verbose) option for clfsm shows the execution of the states.

7

http://wiki.ros.org/

Figure 2: RosBlindTurttleBot is a simple llfsm. If you have completed the ROS tutorials
and understand the semantics of llfsms you should also be able to describe what it does before you
actually run it.

2.5 A machine that controls actuators: RosBlindTurttleBot
Now we demonstrate sending messages so that a robot does something; that is, a very simple
machine that control the walking behavior of ROS:turtlesim. This appears in the second part of
the video www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be and corresponds to the
machine RosBlindTurttleBot. Figure 2 shows the schematics of it. The behavior is very
simple, walk straight for a bit, then turn for a bit, and repeat these two sates.

Please also attempt to build the machine from scratch using MIEDITLLFSM. All states have
only OnEntry sections, except the END state, which is actually empty. The Initial state just
initializes the ROS environment.

int argc = 0; static char *argv[1];
std::string node_name="blindturtlebot";
char * cstr = new char [node_name.length()+1];
std::strcpy (cstr, node_name.c_str());
argv[0]= cstr;

ros::init(argc, argv, "blindturtlebot");
n=new ros::NodeHandle();
msg= new geometry_msgs::Twist();

chatter_pub = n->advertise<geometry_msgs::Twist>("/turtle1/cmd_vel",
1000);

msg->linear.x = 0.0;
msg->linear.y = 0.0;
msg->linear.z = 0.0;

msg->angular.x = 0.0;

2For some ROS versions you may need to edit out linking against some libraries: rosconsole_log4cxx,
rosconsole_backend_interface boost_thread

8

http://wiki.ros.org/
http://wiki.ros.org/
http://www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be
http://wiki.ros.org/
http://wiki.ros.org/

msg->angular.y = 0.0;
msg->angular.z = 0.0;

You may wish to explore the ROS documentation for the ROS:turtlesim to understand better
some of this values, although they should be somewhat understandable from their names. It also
makes more sense if we describe the variables global to all states.

ros::NodeHandle* n
ros::Publisher chatter_pub
geometry_msgs::Twist * msg

And this data types from ROS require the corresponding include files.
#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "CLMacros.h"

#include <sstream>
The OnEntry part of state STRAIGHT sets up the linear speed of the X direction in the

reference frame of the robot to a value greater than zero, making the turtle simulator walk the
turtle straight. It publishes the message and advances one spin of ROS.

msg->linear.x = 2.0;
msg->angular.z = 0.0;

chatter_pub.publish(*msg);

The OnEntry of the TURN_RIGHT state is very similar, but now is the angular seed that
changes.

msg->linear.x = 0.0;
msg->angular.z = -2.0;

chatter_pub.publish(*msg);

All transitions are of one second after_ms(1000) except the transitions to END which test
if ROS is operational (!ros::ok()).

You can compile and build the machine using the catkin package approach and the script
machine_catkin_setup.sh (see Section 2.2).

Alternatively, you can use the bamke approach and make sure that the Makefile includes
the name of the machine:
RosBlindTurttleBot
in the assignment to the variable MACHINES but without the extension .machine. Then simply
compile it.

cd $HOME/catkin_ws/machines
bmake

There may be again some warnings, but an executable machine is produced. In another terminal
start roscore. In a third terminal start ros::turtlesim.

rosrun turtlesim turtlesim_node
In the machines folder run the machine using clfsm.

/catkin_ws/devel/lib/clfsm/clfsm RosBlindTurttleBot
You should observe the turtle making triangles as in the video
www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be.

9

http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be

Whiteboard+

Sender+ Receiver+
Receiver+

Receiver+
Receiver+

Figure 3: The role of some middleware (or whiteboard) is to simplify the APIs of communication
between a sender of a message and the receivers.

2.6 A machine for reactive behavior: sensors and actuators
This is the third demonstration machine. It will require a bit more work, as with machines, we
use an approach to messages that gives preference to the get_Message approach, rather than a
publisher-subscriber approach. For some more discussion on this you can see the paper “High Per-
formance Relaying of C++11 Objects Across Processes and Logic-Labeled Finite-State Machines”
by Vlad Estivill-Castro, Rene Hexel and Carl Lusty International Conference on Simulation, Mod-
elling, and Programming for Autonomous Robots (SIMPAR 2014) Bergamo, Italy. October 20-23.
In Brugali, D. et al. (Eds.): Lecture Notes in Artificial Intelligence LNAI 8810, pp. 182-194.
Springer International Publishing Switzerland (2014). Suffice to say we have two approaches to
relay the messages from a sender to a receiver through some middleware (see Figure 3).

PUSH: (closer to event-driven) the receivers subscribe a call-back in the whiteboard. The posting
of a message by the sender spans new threads in the receivers.

PULL: (closer to time-triggered) receivers query the whiteboard for the latest from the sender.
The receiver, in its own thread, retrieves the message. The sender, in its own thread, just
adds messages.

From the perspective of software architectures, middleware provides the flexibility of a black-
board, which has also received names like broker. Thus, it is not surprising that this pattern
has also emerged as the CORBA standard (of the Object Management Group, OMG) with the
aim of facilitating communication on systems that are deployed on diverse platforms. In sim-
ple terms, these types of infrastructures enable a sender to issue what we will refer to as an
add_Message(msg : T) which is a non-blocking call. In a sense, posting msg to the mid-
dleware is simple. Such a posting may or may not include additional information, e.g. a sender
signature, a timestamp, or an event counter that records the belief the sender has of the currency of
the message. But when it comes to retrieving the message, there are essentially two modes.

subscribe(T, f): The receiver subscribes to messages of a certain type T (of an implied class)
and essentially goes to sleep. Subscription includes the name f of a function. The middle-
ware will notify the receiver of the message msg every time someone posts for the given

10

class T by invoking f(msg) (usually queued in a type T specific thread). This is typically
called PUSH technology.

get_Message(T): The receiver issues a get_Message to the middleware that supplies the
latest msg received so far for the type T . This is usually called PULL.

For example, ROS’ PUSH technology names a communication channel, a ROS::topic (corre-
sponding to what we call a type). The modules posting or getting messages are called nodes.
Posting a message in ROS is also called publishing. In fact, there is another mechanism for com-
munication, called ROS-services, which is essentially a remote-procedure call, the requester/client
invokes though the middleware a function (client.call which is blocking) and obtains a data
structure as a response (or a failure signal) from a call-back in a server (we will construct a simple
example in the next section)

2.6.1 The sample ROS-service to publish the position of the turtle

Thus, this needs the position of the turtle in the middleware enabled by ROS. The program
turtlesimlistener.cpp
is such a ROS publisher and is distributed as the only source program of the package
turtle_sensor_poster.
Familiarity with the tutorials for ROS:services will facilitate understanding what this does. It
publishes the position fo the turtle as messages basicly defined in
turtle_sensor_poster/srv/TurtlePosition.srv.
Download the package turtle_sensor_poster.tar.gz and place it in your catkin_ws.
It should compile with the standard catkin_make.

2.6.2 The example llfsm where the turtle reacts to its position to the wall

This new machine (RosWallTurttleBot) appears in Figure 4. This machine requires the
following includes.

#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "turtle_sensor_poster/TurtlePosition.h"
#include "CLMacros.h"
#include <sstream>

And we make use of the following variables.
ros::NodeHandle* n
ros::ServiceClient client
ros::Publisher chatter_pub
geometry_msgs::Twist* msg
ros::NodeHandle* pos_n
long pos_x
long pos_y
turtle_sensor_poster::TurtlePosition srv

Most of the states and transitions are not as surprising given the previous machine. In fact, the
Initial is almost the same and we have used the same string to name this ROS node (technically an

11

http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

Figure 4: RosWallTurttleBot is a llfsm implementing a simple reactive behavior. You can
see this behavior in action in the video youtu.be/4txscEXN8lQ.

12

http://youtu.be/4txscEXN8lQ

error, but as long as you do not run both machines, there should be no problem). What you need
to add is the initialisation of pos_n and the client3.

pos_n=new ros::NodeHandle();

client = pos_n->serviceClient<turtle_sensor_poster::TurtlePosition>("turtle_position");

States STRAIGHT and TURN_RIGHT are also just as before, and the state STOP just sets
both speeds to zero.

msg->linear.x = 0.0;
msg->angular.z = 0.0;

chatter_pub.publish(*msg);

The state BACK sets the linear forward/backwards speed of the turtle to a negative value (remember
linear x is in the reference frame of the robot and is straight).

msg->linear.x = -2.0;
msg->angular.z = 0.0;

chatter_pub.publish(*msg);

Thus, the only trick is in the state TEST, where the position of the turtle in the space is recuperated.
pos_x=static_cast<long>(srv.response.x);
pos_y=static_cast<long>(srv.response.y);

We arrive to this state only after one second and a successful retrieval of the data from the publisher.
That is, the transition between STOP and TEST is

after_ms(1000) && client.call(srv)

Read about ROS::services in the ROS tutorials if this is not clear, but a bit more discussion will
follow when we present the service.

The other interesting transition is the transition going out of TEST back to STRAIGHT.
pos_x>2 && pos_y>2 && pos_x<9 && pos_y<9

This checks that the recent read positions for the turtle are well within the [0,10]×[0,10] en-
vironment. Thus, when the position is central to the environment, the turtle goes back to an-
other straight trajectory. Otherwise, after a second, it performs the step-back (BACK) and turn
(TURN_RIGHT)before going back to Straight.

2.6.3 Running the machine RosWallTurttleBot

Thus, we are almost ready to run RosWallTurttleBot. It is compiled the same way as the
previous ones. You can use the approach of building a catkin package with the script
machine_catkin_setup.sh.
However, in this case we depend on one more package, so create the package for the machine as
follows.

3The diagram (Figure 4) is inconsistent, the placement of the service for the position is
turtle_sensor_poster.

13

http://wiki.ros.org/
http://wiki.ros.org/

cd $HOME/catkin_ws/src
catkin_create_pkg RosWallTurttleBot std_msgs roscpp clfsm libclfsm
turtle_sensor_poster

This will create the necessary dependencies list in the file package.xml and in the CMakeLists.txt.
Follow the same process as in Section 2.2; however, there is one more thing, we need to specify to
find the includes for turtle_sensor_poster. Add

include_directories(${turtle_sensor_poster_INCLUDE_DIRS})

at the end of the other includes recommended by the script but before
include_directories(
${catkin_INCLUDE_DIRS}
)

Them, a catkin_make as usual should compile this machine. Now just do the placing of
the result in devel/lib/libRosWallTurttleBot.some-extension to the target in
devel/RosWallTurttleBot.machine.

Alternatively, run bmake on the machines directory.
cd $HOME/catkin_ws/machines
bmake

Now, open four terminals. In one, run roscore, the communication middleware. In another,
run the turtle simulator.

rosrun turtlesim turtlesim_node

On a third one, we run the service.
cd $HOME/catkin_ws
./devel/lib/turtle_sensor_poster/turtlesimlistener

Finally, the machine is executed in the fourth terminal.
cd $HOME/catkin_ws/machines
/catkin_ws/devel/lib/clfsm/clfsmRosWallTurttleBot

You should observe the behavior as in the video youtu.be/4txscEXN8lQ.

2.6.4 A machine to suspend and re-start RosWallTurttleBot

Several llfsms can be executed concurrently in clfsm. Also, they can be suspended, restarted and
resumed. One example is TurtleSuspendResume. The diagram of the machine appears in
Fig. 5. We emphasize that this machine makes use in its includes of

#include "CLMacros.h"

This is important, observe the transitions like
is_suspended("RosBlindTurttleBot")

and
is_running("RosBlindTurttleBot")

. Also, we see the calls in the state Initial to suspend the earlier machine
suspend("RosBlindTurttleBot");

While in the state RESTART
resume("RosBlindTurttleBot");

14

http://youtu.be/4txscEXN8lQ

Figure 5: TurtleSuspendResume is a llfsm that suspends and starts
RosWallTurttleBot.

enables the other machine to continue. There are some important details about the scheduling
clfsm does of the OnEntry and OnExit of llfsms under these utilities and in general for an
arrangement of llfsms. The llfsms in the arrangement are executing in round-robin fashion, each
machine having a turn to the token of execution of a ringlet of its current state. A ringlet is to
execute the OnEntry section provided we are coming from another state, to evaluate all transitions
out in sequence and if one fires, the OnExit run and the ringlet stops here. If no transition fires the
Internal section is executed and the ringlet stops.

If we are not coming from another state, the OnEntry does not get executed, the ringlet resumes
from evaluating the sequence of transitions.

This llfsm it shows that all machines have a state SUSPENDED, and that any execution of
a ringlet in clfsm consists of checking if the machine with the token has been asked to be sus-
pended. In that case, the machine performs a transition to the SUSPENDED state as if it were
any other state. However, it will not get a turn on the round-robing until it moves out fo the
SUSPENDED state. The resume sends the machine back to the state from which it was sus-
pended and re-executes its OnEntry section. When suspended, a machine does not execute its
OnExit. That is the only exception of what suspension causes to a machine.

15

	Examples of logic-labelled finite-state machines using clfsm
	The setup

	Machines with the ROS turtlesim
	Building the machine RosPingPong using MiEditLLFSM
	How to compile clfsm machines with catkin
	How to run the machine
	How to compile the machine RosPingPong with bmake
	A machine that controls actuators: RosBlindTurttleBot
	A machine for reactive behavior: sensors and actuators
	The sample ROS-service to publish the position of the turtle
	The example llfsm where the turtle reacts to its position to the wall
	Running the machine RosWallTurttleBot
	A machine to suspend and re-start RosWallTurttleBot

